Course name: Thermodynamics

ECTS	6.0
Course status	facultative
Course final assessment /evaluation of outcomes	Exam / graded credit
Prerequisite	Basics of physics

Main field of study: Environmental Engineering

Educational profile	General academic
Code of studies and education level	bachelor
Semester of studies	winter or summer
Language of instruction	English

Course offered by:

Name of faculty offering the course	Environmental Engineering and Land Surveying		
Name of department offering the course	Department of Rural Building		
Course coordinator	Jan Radoń, Ph.D., Agnieszka Sadłowska, Ph.D.		

Learning outcomes:

Symbol of outcome	Description of the learning outcome	Reference to main field of study outcomes	Area symbol*
	KNOWLEDGE – student knows and understands:		
THD_K1	zero, first and second law of thermodynamics and its applications in environmental engineering; physical processes affecting external and internal climate.	IS1_W02 IS1_W08	Т
SKILLS – student is able to:			
THD_S1	use thermodynamic properties such as temperature, pressure, internal energy, enthalpy, entropy etc.; create engineering applications of thermodynamics in heating, air conditioning etc.	IS1_U03 IS1_U04	Т
SOCIAL COMPETENCIES – student is ready to:			
THD_C1	critically assess his knowledge, continuous self-education and improve his competences	IS1_K01	Т

Teaching contents

Lectures:	15 hours
Topics	 Introduction to thermodynamic concepts and nomenclature. System (closed system) and Control Volume (open system); Characteristics of system boundary and control surface. Thermodynamic state. Zeroth law of thermodynamics. Basic gas laws (Boyle's, Charls, Gay Lussac). Volume and the number of molecules: Avogadro's law. Ideal gas equation of state (P-V-T relation). Total air conditioning applications (psychrometrics). Mollier chart First Law of Thermodynamics. Energy, internal energy as a property, components of energy, thermodynamic distinction between energy and work; concept of enthalpy,

- definitions of specific heat at constant volume and at constant pressure.
- 6. Identifications of directions of occurrences of natural processes. Entropy. Second law of thermodynamics.
- 7. Expressions for displacement work in various processes through p-v, p-s diagrams. Schematic representation, efficiency and coefficient of performance. Carnot cycle.
- 8. Heat transfer; Conduction, Convection, Radiation. Fourier's law. Heat transfer trough multilayer building assembly.

Accomplished learning outcomes	THD_K1, THD_C1
Means of verification, rules and criteria of assessment	Single-choice test, positive assessment should be given at least 50% of correct answers to given questions: <50% — insufficient (2.0); 50–60% — sufficient (3.0); 61–70% — satisfactory plus (3,5); 71–80% — good (4.0); 81–90% — good plus (4,5); 91–100% — very good (5.0). The share of the lecture grade in the final grade is 50%.
Seminars:	30 hours

1. Basic thermodynamics' definitions. Units and conversions.

- 2. Applying thermodynamic properties using Boyle's, Charls and Gay Lussac's law.
- 3. Calculations of gas parameters using equations of state for an ideal gas. Representation of various processes on P-v diagram.
- 4. Calculation of work done in various thermodynamic processes.
- 5. Calculation of enthalpy in solids, fluids and gas.
- Determination the properties of dry air-water vapor mixtures, plot processes on a psychrometric chart, and analyze processes involving dry air-water vapor mixtures to perform energy and mass balances.
- 7. Applications of the conservation of mass, conservation of energy, and the first law of thermodynamics.
- 8. Review. First guiz.

Topics

- 9. Calculation of entropy in closed and open systems. Plot T-s diagrams.
- 10. Discussing of Applications of second law of thermodynamics.
- 11. Representation of common ideal power generation cycles (carnot, Rankine, otto, diesel cycles) on P-v, T-s diagrams. Calculation of possible and useful work; calculation of cycle efficiency.
- 12. Analyzing of refrigeration and heat pump systems, including single and multistage vapor compression cycles, and gas refrigeration cycles.
- 13. Basic modes of heat transfer; conduction, convection and radiation, and their application to simple situations.
- Calculation of heat transfer through multilayer building assembly. Temperature diagram by steady-state heat flow. Calculation of heat loss from thermal insulated pipes.

15. Review, Second quiz.

Accomplished learning outcomes	THD_S1
Means of verification, rules and criteria of	Passing quiz on exercises – a grade from exercises is
assessment	an arithmetic average of formative grades. The share
	of the grade for the project exercises in the final grade
	of the subject is 50%.

References:

Basic	1. Van Ness H. C. 1969. Understanding thermodynamics. McGraw-Hill-Book,
	New York, USA, pp. 103.

McGraw-Hill-Book, New Yo	rk, USA, pp. 406.	· ·	
1. DOE fundamentals handbooks. 1992. Thermodynamics, heat transfer, and fluid flow, U.S. Department of Energy.			
ng outcomes			
study: R – Agricultural,		0.0	ECTS **
nary sciences			
study: T – technical sciences		6.0	ECTS**
	McGraw-Hill-Book, New Yo 3. Borgnakke C., Sonntag R.I. Hoboken, USA. 1. DOE fundamentals handb fluid flow, U.S. Department ng outcomes study: R – Agricultural, nary sciences	McGraw-Hill-Book, New York, USA, pp. 406. 3. Borgnakke C., Sonntag R.E. 2013. Fundamentals of Hoboken, USA. 1. DOE fundamentals handbooks. 1992. Thermodyn fluid flow, U.S. Department of Energy. ng outcomes study: R – Agricultural, nary sciences	3. Borgnakke C., Sonntag R.E. 2013. Fundamentals of Thermodynam Hoboken, USA. 1. DOE fundamentals handbooks. 1992. Thermodynamics, heat trafluid flow, U.S. Department of Energy. ng outcomes study: R – Agricultural, 0.0 nary sciences

Structure of student activity

Contact hours	57	hrs.	2.3 ECTS**
Including: lectures	15	hrs.	
classes and seminars	30	hrs.	
consultations	10	hrs.	
participation in research	0	hrs.	
obligatory traineeships	0	hrs.	
participation in examination	2	hrs.	
e-learning	0	hrs.	0.0 ECTS**
student own work	93	hrs.	3.7 ECTS**

^{*}Areas of academic study in the fields of: A – the arts; H – humanities; M – medical, sport and health sciences; N – natural sciences; P – biological sciences; R – agricultural, forestry and veterinary sciences; S – social studies; T – engineering and technology

^{**} stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25–30 hours of classes