Course name: Pump Stations | ECTS | 6.0 | | |---|---|--| | Course status | facultative | | | Course final assessment /evaluation of outcomes | Graded credit | | | Prerequisite | hydraulics, river engineering, sanitary engineering | | ## Main field of study: Engineering and Water Management | Educational profile | General academic | | |-------------------------------------|------------------|--| | Code of studies and education level | bachelor | | | Semester of studies | summer | | | Language of instruction | English | | Course offered by: | Name of faculty offering the course | Environmental Engineering and Land Surveying | |--|--| | Name of department offering the course | Hydraulic Engineering and Geotechnics | | Course coordinator | Dr. Eng. Jacek Florek, Ph.D. | Learning outcomes: | Symbol of outcome | Description of the learning outcome | Reference to
main field of
study
outcomes | Area
symbol* | |--|--|--|-----------------| | - | KNOWLEDGE – student knows and understands: | | | | PST_K1 | pump classification, operating principles, concepts of suction
and discharge head, efficiency, efficiency, power
consumption, flow characteristics, throttling curve, pump
applicability curve. | IGW1_W08 | Т | | PST_K2 | the mechanism of creating single and multi-stage pump
systems, knows the laws of model speed similarity,
determines the goals and tasks of pumping stations based on
data. | IGW1_W15 | Т | | | SKILLS – student is able to: | | | | PST_S1 | calculate the system with a single pump, selection of pump type. | IGW1_U07 | Т | | PST_S2 | determine the range of pump applicability, suction and discharge head, efficiency. | IGW1_U16 | Т | | PST_S3 | calculate the system of series and parallel pumps, taking into account the applicability of their connection pumps and cooperation curves. | IGW1_U16 | Т | | PST_S4 | perform calculations of the pumping station, power consumption, check the system and its threats. | IGW1_U06 | Т | | SOCIAL COMPETENCIES – student is ready to: | | | | | PST_C1 | being aware of the importance of the correct functionality of devices, their environmental impact, the concept of energy efficiency, device performance, optimization of design assumptions. | IGW1_K03
IGW1_K07 | Т | | PST_C2 | making decisions at individual stages of calculations, designing and assessing potential risk in the implemented IGW1_K02 T project. | | | | | |---|--|--|--|--|--| | Teaching co | ontents | | | | | | Lectures: | ontonto | | 15 | hours | | | Topics | Pump classification, structural and functional division. Principles of displacement and centrifugal pumps. Suction and discharge height. Pump and system efficiency. Pump power consumption. Flow characteristic, throttling curve, characteristic curve of pump applicability. Pump systems. Single and multi-stage pumps, model speed similarity laws. Pumping stations goals and task Current methods of pump selection and pumping station design. Cavitation. | | | | | | Accomplish | ned learning outcomes | PST_K1, PST_K2, F | PST C1. PST C | 2 | | | Means of v
assessmen | erification, rules and criteria of
it | Choice test, positive assess least 50% of correct answ <50% – insufficient (2.0); 5 61–70% – satisfactory plus (4.0); 81–90% – good plus good (5.0). The share of the grade is 50%. | vers to given of
60–60% – suffice
s (3,5); 71–80%
s (4,5); 91–100 | questions:
ient (3.0);
% – good
% – very | | | Classes: | | grado 10 0070. | 30 | hours | | | Topics | Single pump system, selection Range of pump applicability geometrical, manometric and a second selection Pump performance, input pumperhanical efficiency. Flow characteristics, stability, a second selection curves. Pumping stations, pump-piper system and its threats. | y, determination of suction useful values, hydraulic efficien power, useful power, interrethrottling. Industries pumps, applicable work point, power con | he task. and discharge ncy. nal, volumetric, ility, pump cor nsumption chara | heights,
general,
mbination,
acteristics, | | | Accomplish | ned learning outcomes | PST_S1, PST_S2, F | PST_S3, PST_S | 4 | | | Means of verification, rules and criteria of assessment | | Passing reports on exercises – a grade from exercises is an arithmetic average of formative grades. The share of the grade for the project exercises in the final grade of the subject is 50%. | | | | | Doforonosa | | | | | | | Basic | 2. Wieczysty A. 1999. Pompownie wodociągowe. Wyd. PK, Kraków. | | | | | | Supplemen | ıtary 1. Stępniewski M. 1985. Pol | rripy. vviv i , vvarszawa. | | | | | Area of aca | f learning outcomes
demic study: R – Agricultural,
d veterinary sciences | | 0.0 | ECTS ** | | | Area of academic study: T – technical sciences | | | 6.0 ECTS** | |--|----|------|------------| | Structure of student activity | | | | | Contact hours | 55 | hrs. | 2.2 ECTS** | | Including: lectures | 15 | hrs. | | | classes and seminars | 30 | hrs. | | | consultations | 10 | hrs. | | | participation in research | 0 | hrs. | _ | | obligatory traineeships | 0 | hrs. | _ | | participation in examination | 2 | hrs. | | | e-learning | 0 | hrs. | 0.0 ECTS** | | student own work | 95 | hrs. | 3.8 ECTS** | ^{*}Areas of academic study in the fields of: A – the arts; H – humanities; M – medical, sport and health sciences; N – natural sciences; P – biological sciences; R – agricultural, forestry and veterinary sciences; S – social studies; T – engineering and technology ^{**} stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25–30 hours of classes