Course name: Elements of Flood Protection | ECTS | 6.0 | |---|-----------------------------------| | Course status | facultative | | Course final assessment /evaluation of outcomes | graded credit | | Prerequisite | basics of open channel hydraulics | ## Main field of study: Engineering and Water Management | Educational profile | General academic | |-------------------------------------|------------------| | Code of studies and education level | master of thesis | | Semester of studies | winter or summer | | Language of instruction | English | Course offered by: | Name of faculty offering the course | Environment Engineering and Land Surveying | | | | |--|--|--|--|--| | Name of department offering the course | Hydraulic Engineering and Geotechnics | | | | | Course coordinator | Andrzej Strużyński, Ph.D., Maciej Wyrębek, Ph.D. | | | | Learning outcomes: | Symbol of outcome | Description of the learning outcome | Reference to main field of study outcomes | Area
symbol* | |--|---|---|-----------------| | | KNOWLEDGE – student knows and understands: | | | | EFP_K1 | processes determining the water cycle in nature and techniques for modeling and forecasting hydrological extreme phenomena; methods for conducting a flood risk study and determining flood risk zones using specialized IT techniques; ways of managing flood zones. | IGW2_W05
IGW2_W06
IGW2_W07 | Т | | | SKILLS – student is able to: | | | | EFP_S1 | describe and model water circulation processes in the environment; acquire and use the necessary data and information to perform a flood risk study and water management planning; develop a way of managing areas of immediate flood risk. | IGW2_U06
IGW2_U07
IGW2_U08 | Т | | SOCIAL COMPETENCIES – student is ready to: | | | | | EFP_C1 | making engineering and water management decisions, and taking into account the environmental impacts of human activities and associated risks; bear responsibility for decisions taken in the designation of floodplains. | IGW2_K02
IGW2_K03 | Т | ## **Teaching contents** | Lectures: | | 15 hours | |-----------|--|----------| | Topics | 1. An introduction to Water and Flood Directives (WFD and FD). | | | | 2. Genesis of flood events. | | | | 3. Flood range. | | | | 4 Methods of modeling floods | | | | 5. Main factors of flood risk. | | | | |--|--|-------------------------------|--|---| | | 6. Flood protection methods.
7. Flood risk design. | | | | | | d learning outcomes | | EFP_K1; I | EFP C1 | | Means of verification, rules and criteria of | | Written ex | | ssment should be given at | | assessment | , | least 50% – 61–70% (4.0); 81- | % of correct answinsufficient (2.0); 5
– satisfactory plus
–90% – good plus
). The share of the | vers to given questions: 60–60% – sufficient (3.0); s (3,5); 71–80% – good s (4,5); 91–100% – very e lecture grade in the final | | Classes: | | 10 | | 30 hours | | Topics 2 | 1. Creating of the sampling survey within the flooded regions. | | | | | | d learning outcomes | | EFP_ | S1 | | | ification, rules and criteria of | exercises grades. | reports on exer
is an arithmeti
The share of the | cises – a grade from c average of formative grade for the project of the subject is 50%. | | D (| | | | | | References: Basic Supplementa | Strużyński A., Bartnik W. 2008. Flood protection in high valued river ecosystem Middle Delta system of the Nida River. EJPAU, manuscript. Florek J., Strużyński A., Mucha J. 2007. Hydrodynamic effects of flood wave travel along Targaniczanka Stream, Acta Scientiarum Polonorum, Formatio circumiectus, 6 (4), 39–50. Mokwa M., Tymków P., Wężyk P. 2009. Identification of flow resistance coefficients in floodplain forests using terrestrial laser scanning. Studia Geotechnica et Mechanica, Vol. XXXI, No. 1. CEN 2004. Water Quality – Guidance standard for assessing the hydromorphological features of rivers. EN-14614. European Comitee for Standarization, Brussels. Flood Directive. Dyrektywa 2007/60/WE Parlamentu Europejskiego i Rady z dn. | | | | | | 23 października 2007 r.
nim.
3. Identification and Destig
Common Implementanti | w sprawie
gnation of F | oceny ryzyka pov
łeavily Modified ar | vodziowego i zarządzania
nd Artificial Water Bodies, | | | earning outcomes | | | 0.0 5070 ** | | Area of academic study: R – Agricultural, forestry and veterinary sciences | | | | 0.0 ECTS ** | | Area of academic study: T – technical sciences | | 25 | | 6.0 ECTS** | | , iioa oi aoaut | onno otaay. Ta tooninida oolehoe | , | | 0.0 2010 | | | tudent activity | | | 0.0 =0=0±± | | Contact hours | | 57 | hrs. | 2.3 ECTS** | | Including: lec | | 15 | hrs. | | | | sses and seminars | 30
10 | hrs. | | | | nsultations
ticination in research | | hrs. | | | par | ticipation in research | 0 | hrs. | | | obligatory traineeships | 0 | hrs. | _ | |------------------------------|----|------|--------------| | participation in examination | 2 | hrs. | | | e-learning | 0 | hrs. | 0.0 ECTS** | | student own work | 93 | hrs. | 3.7 ECTS** | ^{*}Areas of academic study in the fields of: A – the arts; H – humanities; M – medical, sport and health sciences; N – natural sciences; P – biological sciences; R – agricultural, forestry and veterinary sciences; S – social studies; T – engineering and technology ^{**} stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25–30 hours of classes