Course name: DESIGN AND OPERATION OF RENEWABLE ENERGY ENGINEERING SYSTEMS

ECTS	7		
Course status	obligatory		
Course final assessement/evaluation of outcomes	exam		
Prerequisites			

Main field of study:

Renewable Energy Sources and Waste Management

Profile of study	General-academic
The code of studies (education level)	SM (master)
Semester of studies	summer / winter
Language of instruction	English

Course offered by:

Name of faculty offering the course	Faculty of Production and Power Engineering
Name of department offering the course	Department of Bioprocesses Engineering, Energetics and Automatization
Course coordinator	Hubert Latała, assoc. prof.

Learning outcomes of the course:

	Description of learning outcome	Reference to	
Symbol of outcome		main field of study outcomes	discipline#
	KNOWLEDGE – student knows and/or understands:		
PEO_W1	advanced methods of solving engineering tasks related to the operation of equipment, installations and facilities for obtaining energy from renewable sources and waste management	OZE2_W06	ΤΖ
PEO_W2	methods for life cycle assessment of the equipment, facilities and technical systems used for waste management	OZE2_W09	TZ, TS
PEO_W3	advanced methods, techniques, technologies applied in solving simple engineering tasks which allow to use and shape the nature potential in the field of renewable energy sources and waste management	OZE2_W11	TZ, TS

SKILLS – student is able to:

PEO_U1	independently plan and perform experiments, take measurements, interpret the results obtained and draw conclusions	OZE2_U10	TZ
	evaluate the operation of mechanical system components, conduct a diagnostic experiment allowing to assess the correctness of the system operation	OZE2_U12	ΤΖ

PEO_U3	assess the advantages and disadvantages of the engineering activities undertaken, including their originality	OZE2_U15	ΤZ
PEO_U4	assess suitability, select and apply appropriate methods and tools for solving engineering tasks (including complex tasks) that are characteristic of the field of renewable energy sources and waste management	OZE2_U16	TZ, TS
PEO_U5	design a simple or complex process typical of the field of renewable energy sources and waste management using the right techniques and tools	OZE2_U19	ΤΖ

SOCIAL COMPETENCE- student is ready to:

PEO_K1	take responsibility for decisundertaken	sions and effects of engineering activities	OZE2_K01	TZ
PEO_K2	take conscious, social, professional and ethical responsibility for the condition of natural environment (is aware of the risk and can assess effects of entrepreneurial activity)			TZ
Teaching co	ontents:			
Lectures			20	hours
Topics of the lectures	Biogas - technologies of a	ge hydropower ions - efficiency		
Accomplished learning outcomes PEO_W1, PEO_W2, PEO_W3, PEO_K1, PEO_K2				
Verification r of outcome a	nethods, rules and criteria assessment	Test (50%)		
Classes			50	hours
Topics of the classes				
Accomplished learning outcomes PEO_U3, PEO_U4, PEO_U5, PEO_K1, PEO_K2				
Verification methods, rules and criteria of outcome assessment Preparation of projects, Reports from laboratory exercises (50%)		rcises (50%)		
.				

References:

Basic	 Miguel A. Sanz-Bobi. 2014. Use, Operation and Maintenance of Renewable Energy Systems. Experiences and Future Approaches. Springer International Publishing Switzerland 2014. DOI: https://doi.org/10.1007/978-3-319-03224-5. Sabyasachi SenGupta, Ahmed F. Zobaa, Karma Sonam Sherpa, Akash Kumar Bhoi. 2018. Advances in Smart Grid and Renewable Energy. Springer Nature Singapore Pte Ltd. DOI: https://doi.org/10.1007/978-981-10-4286-7.
Supplementary	 Latała Hubert, Nęcka Krzysztof, Kurpaska Sławomir, Karbowniczak Anna: Theoretical and Real Efficiency of Monocrystalline PV Modules in a 2-Year Cycle, w: Infrastructure and Environment /Krakowiak-Bal Anna, Vaverkova Magdalena (red.), 2019, Springer, ISBN 978-3-030-16541-3, ss. 339- 344, DOI:10.1007/978-3-030-16542-0_42. Latała Hubert, Kurpaska Sławomir, Kwaśniewski Dariusz: Theoretical and real efficiency of nonsilicon PV modules in a 3-year cycle, w: 2019 Applications of Electromagnetics in Modern Engineering and Medicine (PTZE) / Korzeniewska Ewa (red.), 2019, Institute of Electrical and Electronics Engineers, ISBN 978-83-88131-00-4, ss. 93-96, DOI:10.23919/PTZE.2019.8781734 Sławomir Kurpaska, Jarosław Knaga, Hubert Latała, Michał Cupiał, Paweł Konopacki, Ryszard Hołownicki. The Comparison of Different Types of Heat Accumulators and Benefits of Their Use in Horticulture. Sensors 2020, 20, 1417; doi:10.3390/s20051417

Structure of learning outcomes:

Discipline:	mechanical engineering # (TZ)			5,5	ECTS [*]
Discipline:	TS			1,5	ECTS [*]
Structure	of student activities:				
Contact ho	urs	85	hours	3,4	ECTS ^{**}
including:	lectures	20	hours		
	classes and seminars	50	hours		
	consultations	10	hours		
	participation in research		hours		
	mandatory trainerships		hours		
	participation in examinations	5	hours		
e-learning			hours		ECTS ^{**}
student own work		90	hours	3,6	ECTS**

* where 10 hours of classes = 1 ECTC (in case of 15 h \rightarrow 2 ECTS)

** stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25 - 30 hours of classes # academic discipline code: RZ - animal science and fishery, PB - biological sciences, etc.