Course name

Plant Molecular Markers			
ECTS 4			
Course status facultative			
Course final assessment /evaluation of clexam			
Prerequisite basic knowledge of molecular biology and genetics			

Main field of study:

Erasmus +

Educational profile	general academic
Code of studies and education level	bachelor/engineer (SI) or master of science (SM)
Semester of studies	winter or summer
Language of instruction	English

Prowadzący przedmiot:

Name of faculty offering the course	Faculty of Agricultural and Economics
of department offering the	Department of Plant Breeding, Physiology and Seed Science
Course coordinator	dr inż. Magdalena Wójcik-Jagła

Learning outcomes

Symbol of outcome	Description of the learning outcome	Reference to main field of study outcomes	Area symbol		
	KNOWLEDGE – student knows and understands:				
PMM_W1	what polymorphism is and how it translates into molecular markers		P,R		
PMM_W2	basic molecular DNA, expression, and QTL markers P,R				
PMM_W3	uses of molecular markers in plant biology applications				
SKILLS – student is able to:					
PMM_U1	plan an experiment with the use of plant molecular markers		P,R		
PMM_U2	perform a PCR analysis of selected basic plant DNA markers and interpret the results		P,R		
PMM_U3	perform genome-wide association mapping (GWAS) and interpret its results		P,R		
SOCIAL COMPETENCIES – student is ready to:					
PMM_K1	individual work while respecting the work of others		P,R		
PMM_K2	participate in discussions on the use of plant molecular markers for different applications		P,R		
Teaching co	ntents:				
Lectures		15	hours		
	Definition and classification of plant moleular markers.				
Topics	Plant molecular markers in comparison to biochemical and physiological markers				
	High-throughput DArT, DArTseq, SNP marker systems - genotyping				
	Quantitative trait markers (QTL and association mapping)				
	Use of plant molecular markers in different applications: plant breeding, phylogenetics, forensic science, bioconservation, ecology etc.				

Means of verification, rules and		Exam - one-choice test (40% participation in the final mark)		
Classess		20 hours		
Topics	DNA isolatio	on from plant leaves		
	PCR with R	APD markers		
	Horizontal e	ectrophoresis and interpretation of the results		
	Genome wi	de association mapping of selected abiotic stress tolerance quantitative trait		
Means of verification, rules and criteria of assessment		Laboratory work report (30% participation in the final mark)		
Seminar		10 hours		
Topics	Presentatio	ns of students' final projects - plan of an experiment using plant molecular markers		
Means of verification, rules and		Oral presentation of the final project (30% participation in the final mark)		
References	:			
Basic		Genomes, Ed. A. T. Brown, Crc Pr Inc, 2023		
		Soriano, J.M. Molecular Marker Technology for Crop Improvement. Agronomy 2020, 10, 1462. https://doi.org/10.3390/agronomy10101462		
		Molecular Marker Techniques: A Potential Approach of Crop Improvement. Ed. Nitish Kumar, Springer, 2023		
Supplementary		Wójcik-Jagła, M., Rapacz, M., Tyrka, M., Kościelniak, J., Crissy, K., & Żmuda, K. (2013). Comparative QTL analysis of early short-time drought tolerance in Polish fodder and malting spring barleys. Theoretical and applied genetics, 126(12), 3021-3034		
		Petrovičová, L., Gálová, Z., Balážová, Ž., Vivodík, M., Wójcik-Jagła, M., & Rapacz, M. (2021). Assess		
		Fiust, A., Rapacz, M., Wójcik-Jagła, M., & Tyrka, M. (2015). Development of DArT-based PCR markers for selecting drought-tolerant spring barley. Journal of applied genetics, 56(3), 299-309.		

Structure of learning outcomes

Area of academic study: agriculture and horticulture					ECTS ^{**}
	Area of academic study: biolog	2	ECTS ^{**}		
Structure	of student activity				
Contact ho	urs	48	hrs	1,9	ECTS ^{**}
Including	Lectures	15	hrs		
	classes and seminars	30	hrs	-	
	consultations	2	hrs	-	
	participation in research		hrs	-	
	obligatory traineeships		hrs		
	participation in examination	1	hrs		
e-learning		0	hrs	0	ECTS ^{**}
student ow	student own work		hrs	2,1	ECTS ^{**}