Course name: Numerical Modeling of Fluvial Processes

ECTS	6.0
Course status	facultative
Course final assessment /evaluation of outcomes	exam / test
Prerequisite	basics of: open channel hydraulics, river morphology

Main field of study: Engineering and Water Management

Educational profile	General academic
Code of studies and education level	master of thesis
Semester of studies	winter
Language of instruction	English

Course offered by:

Name of faculty offering the course	Environment Engineering and Land Surveying
Name of department offering the course	Hydraulic Engineering and Geotechnics
Course coordinator	Leszek Książek Ph.D., Andrzej Strużyński Ph.D.

Learning outcomes:

Symbol of outcome	Description of the learning outcome	Reference to main field of study outcomes	Area symbol*
	KNOWLEDGE – student knows and understands:		
NMF_K1	the principles of operation of 1- and 2-dimensional numerical models. Has theoretical foundations in the construction of numerical models. Knows the rules of collecting data for a numerical model. Is familiar with the possibilities and limitations of numerical models.	IGW2_W01	Т
SKILLS – student is able to:			
NMF_S1	model fluvial processes along a river reach within the influence of the back-water caused by a water reservoir as well as changes of river bed after flood events. The study are carried out using a set of the field measurements as well as computer simulations with one and two dimension depth-averaged model. Involving numerical modelling to computation allows increase the efficiency of work.	IGW2_U06	Т
SOCIAL COMPETENCIES – student is ready to:			
NMF_C1	critically assess his knowledge, continuous self-education and improve his competences	IGW2_K01	Т

Teaching contents

Lectures:	15 hours
	1. Introduction; 1D, 2D and 3D models; applications, limitations of use, data verification.
	2. Governing equations and numerical methods; models structure.
Topics	3. Data collecting, numerical model of terrain, boundary conditions.
,	4. Simulations. Presentation and visualization of results. Interpretations of results, errors
	correction.

Accomplish	ned learning outcomes	NMF_K; NMF_C1		
Means of v assessmer	verification, rules and criteria of	Single-choice test, positive assessment should be given at least 50% of correct answers to given questions: <50% – insufficient (2.0); 50–60% – sufficient (3.0); 61–70% – satisfactory plus (3,5); 71–80% – good (4.0); 81–90% – good plus (4,5); 91–100% – very good (5.0). The share of the lecture grade in the final grade is 50%.		
Classes:		30 hours		
Topics	of the river. 2. 8–20. CCHE2D model – mode	3–20. CCHE2D model – modelling of fluvial processes on a mountain river: numerical model of terrain, mesh generator, boundary conditions, running a simulations,		
Accomplish	ned learning outcomes			
	verification, rules and criteria of			
References	:			
Basic	 Khan A.A. 2003. CCHI Model. Zhang Y., Jia Y. 2002. C Książek L., Radecki-Pa Within the Outlet of a Carpathians, Vol. 2, 139 Strużyński A., Wyrębek below the perpendict 	awlik A. 2008. Modeling of Hydrodynamics Conditions Sand-Gravel Upland River – The Raba River, Polish.		
Supplemen		1. Tena A., Książek L., Vericat D., Batalla R. J. 2013. Assessing the geomorphic effects of a flushing flow in a large regulated river. River Res. Applic., 29, 7,		

Structure of learning outcomes

Area of academic study: R – Agricultural, forestry and veterinary sciences	0,0	ECTS **
Area of academic study: T – technical sciences	6.0	ECTS**

2. Mrokowska M. M., Rowiński P. M., Książek L., Strużyński A., Wyrębek M., Radecki-Pawlik A. 2016. Flume experiments on gravel bed load transport in

unsteady flow – preliminary results. GeoPlanet: Earth and Planetary Science, 221–233, doi:10.1007/978-3-319-27750-9_18.

876-890, doi: 10.1002/rra.2572.

Structure of student activity

Contact hours	57	hrs.	2.3 ECTS**
Including: lectures	15	hrs.	
classes and seminars	30	hrs.	-
consultations	10	hrs.	-
participation in research	0	hrs.	_

obligatory traineeships	0	hrs.	_
participation in examination	2	hrs.	
e-learning	0	hrs.	0.0 ECTS**
student own work	93	hrs.	3.7 ECTS**

^{*}Areas of academic study in the fields of: A – the arts; H – humanities; M – medical, sport and health sciences; N – natural sciences; P – biological sciences; R – agricultural, forestry and veterinary sciences; S – social studies; T – engineering and technology

^{**} stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25–30 hours of classes