Course name: AGRICULTURAL AND HORTICULTURAL PRODUCTION ENGINEERING

ECTS	4
Course status	specialisation, obligatory
Course final assessement/evaluation of outcomes	Exam / graded credit
Prerequisites	production technologies; thermal technique

Main field of study:

field of study name (capital letters) PRODUCTION ENGINEERING

Profile of study	General-academic
The code of studies (education level)	bachelor
Semester of studies	winter / summer
Language of instruction	English

Course offered by:

Name of faculty offering the course	Faculty of Production and Power Engineering
Name of department offering the course	Department of Bioprocess Engineering, Energetics and Automation
Course coordinator	Prof. Sławomir Kurpaska

Learning outcomes of the course:

		Reference to		
Symbol of outcome	Description of learning outcome	main field of study outcomes	discipline #	
	KNOWLEDGE – student knows and/or understands:			
IPR_W1	issues related to technological conditions of plant production and their impact on the engineering of implemented processes	ZIP1_W13	ΤZ	
IPR_W2	construction and operation of mechanical assemblies of machines and devices as well as technical systems used in plant production	ZIP1_W08	TZ	
	SKILLS – student is able to:			
IPR_U1	carry out an analysis of the impact of selected operating parameters on ensuring the requirements of the plant cultivation process, including greenhouse production	ZIP1_U01		
IPR_U2	evaluate and critically analyze the implementation of the technological process in terms of technical solutions used and propose changes	ZIP1_U05		
	SOCIAL COMPETENCE- student is ready to:			

IPR_K1	continuous acquiring knowledge and training in production engineering, and the result of preparing a self-improvement project	ZIP1_K01	
	activities aware of the importance of the engineer's responsibility for the quality of raw materials used in the production of feed and food	ZIP1_K04	

Teaching contents:

Lectures		20 hours		
	Plant production system	ns in covered facilities		
	Technical solutions of	systems for controlling growth factors in objects under covers		
	The principles of selection and design mode of components of growth factor control systems in facilities under covers (processes: irrigation, heat supply, carbon dioxide dosing, lighting of plants).			
Topics of the lectures	Technical solutions in plant protection in sheltered facilities and field horticultural production			
	Computers controlling growth factors in objects under cover			
	Control and measuring equipment in facilities under covers in the aspect of maintaining optimal environmental parameters (air, substrate).			
	Possibilities of using re	newable energy sources in facilities under cover.		
Accomplished learning outcomes		IPR_W1; IPR_W2; IPR_K1; IPR_K2		
Verification methods, rules and criteria of outcome assessment		Credit in writing; for a positive grade at least 51% of the correct answers to the questions asked should be given. Participation in the final grade in the course: 75%		

Classes			25	hours	
	Laboratory exercises ir	the field of designing components of the heating system	in objects	under covers	
	cover.	the field of estimating: fuel, water (nutrient solution), carb	on dioxide	e in objects under	
Topics of the classes	Laboratory exercises in the field of irrigation (fertigation) of horticultural crops				
	Project involving the calculation of: heat loss, radiator area, selection of the boiler's heating power, determination of the heating power utilization factor, estimation of the amount of fuel.				
	Away exercises in a real greenhouse facility				
Accomplishe	d learning outcomes	IPR_U1; IPR_U2; IPR_K1; IPR_K2			
Verification methods, rules and criteria of outcome assessment		Team project (2 to 3 students) project in the selection of heating devices in the greenhouse along with estimation of the amount of fuel. Participation in the final course evaluation: 25%			

References:

Basic	Bakker J.C., Bot G.P.A., Challa H., Van de Braak N.J.: Greenhouse climate control an integrated approach. Wageningen Pers, Wageningen, 1995 Kurpaska S.: Greenhouses and foil tunnel- engineering and proceses (in Polish). PWRiL, Poznań, 2007 S. Kurpaska Z. Ślipek, B. Bożek, J. Frączek: Simulation of heat and moisture transfer in the greenhouse substrate due to warming system by buried pipes. Biosystems Engineering 90(1), 63-74, 2005.
Supplementary	McDonald R., McCollum T.: Temperature of water heat treatment influences tomato fruit quality following low-temperature storage. Posthavaster Biology and Technology, 16(2), 1999. PN-B-03406: 1994. Design heat demand for rooms with a capacity of up to 600 m3 PN-EN 12831: 2006. Heating installations in buildings. Method for calculating the design heat load Company catalogs of hoses, couplings, valves, hydraulic and pneumatic accumulators. Polish Standard PN-92 / B-01706, Water supply installations. Requirements in design, PKNMiJ, 1992 Katalogi firmowe przewodów, złączek, zaworów, akumulatorów hydraulicznych i pneumatycznych. Polska Norma PN-92/B-01706, Instalacje wodociągowe. Wymagania w projektowaniu, PKNMiJ, 1992

Structure of learning outcomes:

Discipline: TZ			4,0	ECTS ^{**}	
Structure o	f student activities:				
Contact hou	ırs	50	hours	2	ECTS ^{**}
including:	lectures	20	hours		
	classes and seminars	25	hours		
	consultations	3	hours		
	participation in research		hours		
	mandatory trainerships		hours		
	participation in examinations	2	hours		
e-learning			hours		ECTS ^{**}
student own work		50	hours	2	ECTS ^{**}

* where 10 hours of classes = 1 ECTC (in case of 15 h \rightarrow 2 ECTS)

** stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25 - 30 hours of classes

academic discipline code: RZ - animal science and fishery, PB - biological sciences, etc.