Course name: Introduction to Machine Learning with Python

ECTS	4
Course status	facultative
Course final assessment /evaluation of outcomes	graded credit
Prerequisite	mathematics

Main field of study: Landscape Architecture

Educational profile	General academic	
Code of studies and education level	bachelor	
Semester of studies	summer	
Language of instruction	English	

Course offered by:

Course onered by.			
Name of faculty offering the course	Faculty of Environment Engineering and Land Surveying		
Name of department offering the course	Hydraulic Engineering and Geotechnics		
Course coordinator	Tymoteusz Zydroń, PhD.		

Learning outcomes:

Symbol of outcome	Description of the learning outcome	Reference to main field of study outcomes	Area symbol*
	KNOWLEDGE – student knows and understands:		
	SKILLS – student is able to:		
PYT_U01	prepare scripts and functions in Python using operations on different data types to engineering calculations; Student is able to create visualizations of the analysis results using selected visualization libraries	IS1_U02 IS1_U03	TS
PYT_U02	prepare and process data using advanced tools for handling large data sets, and then use supervised machine learning techniques to solve selected classification and regression problems	IS1_U02 IS1_U03	TS
SOCIAL COMPETENCIES – student is ready to:			
PYT_K01	continuous education and improvement of professional competences in the use of programming in the preparation and processing of engineering data	IS1_K01	TS

Teaching contents

Lectures:	0 hours	
Topics		
Accomplishe	d learning outcomes	
Means of ve	rification, rules and criteria of	
assessment		
Classes:	45 hours	
Topics	 Installation of Python interactive notebook. Variables and basic data types in Pythons text, numeric types, lists, tuples, dictionaries, sets. Operations on strings, lists, tuples, dictionaries and sets. Arithmetic, assignment, comparison and logical operators. Conditions and If Else statements. While and for loops. Functions, anonymous function lambda. Classes. 	

- 6. Numpy library: array creation, data types, indexing and slicing, basic operators, array shape manipulation, basic linear algebra operations.
- 7. Pandas library: series, data frames creation, basic operations, reading csv and excel files. Operations in pandas library: grouping, merging, pivoting, handling missing data.
- 8. Visualization of data in matplotlib and seaborn libraries.
- 9. Basics of machine learning in sklearn and sktime libraries. Preprocessing standardization, encoding categorical features, imputation of missing, values.
- 10. Supervised learning: classification and regression. Logistic regression, decision trees and ensemble models, support vector machine, nearest neighbors method, neural network models. Undersampling and oversampling of imbalanced datasets in imbalanced-learn library.
- 11. Time series analysis in sktime library.

Accomplished learn	ed learning outcomes PYT_U01, PYT_U02, PYT_K01	
Means of verification	on, rules and criteria of	Projects evaluation – a grade from exercises is an arithmetic
assessment	average of formative grades	
Field practicals:		0 hours
Topics		
Accomplished learn	ning outcomes	
Means of verification	on, rules and criteria of	
assessment		

References:

Basic	McKinney W. 2018. Python for data analysis: data wrangling with Pandas, Numpy and IPython, O'Reilly.
	Géron A. 2020. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.O'Reilly.
Supplementary	Raschka S., Mirjalili V. 2019. Python. Machine learning i deep learning. Biblioteki scikit- learn i TensorFlow 2. Packt. Lutz M. 2007. Learning Python. O'Reilly.

Structure of learning outcomes

Area of academic study: R – Agricultural, forestry	0.0	ECTS **
and veterinary sciences		
Area of academic study: T – technical sciences	4.0	ECTS**

Structure of student activity

Contact hours	50	hrs.	2.0 ECTS**
Including: lectures		hrs.	
classes and seminars	45	hrs.	
consultations	5	hrs.	
participation in research		hrs.	
obligatory field trips		hrs.	
participation in examination		hrs.	
e-learning		hrs.	ECTS**
student own work	50	hrs.	2.0 ECTS**

*Areas of academic study in the fields of: A – the arts; H – humanities; M – medical, sport and health sciences; N – natural sciences; P – biological sciences; R – agricultural, forestry and veterinary sciences; S – social studies; T – engineering and technology

** stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25-30 hours of classes