Course name: Machine learning and artificial intelligence

ECTS	4
Course status	facultative
Course final assessment /evaluation of outcomes	graded credit
Prerequisite	Basic programming skills, basic math

Main field of study: Landscape Architecture, Environmental Engineering, Geodesy, Food Technology

Educational profile	General academic	
Code of studies and education level	bachelor	
Semester of studies	summer	
Language of instruction	English	

Course offered by:

Name of faculty offering the course	Faculty of Environment Engineering and Land Surveying	
Name of department offering the course	Department of Applied Mathematics	
Course coordinator	Prof. Nataliya Shakhovska	

Learning outcomes:

Symbol of outcome	Description of the learning outcome	Reference to main field of study outcomes	Area symbol*
	KNOWLEDGE – student knows and understands:		
ML_K1 ML_K2 ML_K3	classic concepts in the field of machine learning and constructing learning algorithms machine learning models for data regression, classification and clustering problems deep learning methods		
SKILLS – student is able to:			
ML_S1 ML_S2 match the machine learning model to the given problem use existing programming libraries for regression, classification and clustering problems			
SOCIAL COMPETENCIES – student is ready to:			
ML_C1	critical assessment of existing knowledge and continuous expansion of it		

Teaching contents

Lectures:		15 hours		
Topics	Introduction to machine learning and artificial intelligence Linear and logistic regression Decision trees and ensemble methods (random forest, gradient boosting) k-NN algorithm and support vector machines (SVM) Deep learning techniques Introduction to neural networks Social and ethical responsibility issues in machine learning			
Accomplis	ccomplished learning outcomes ML_K1, ML_K2, ML_K3, ML_C1			
Means of verification, rules and criteria of		Written homework assignments performed after individual		
assessment		groups of lectures. To pass the lectures, 50% of the points on the homework assignments is required. Percentage contribution to the final grade: 30%.		

	Final grade for the course determined on the basis of			
		total number of points obtained from lectures and		
		exercises: 51% - 60% grade: 3.0; 61%-70% rating: 3.5;		
		71%-80% rating: 4.0; 81%-90% rating: 4.5; 91%-100%		
		rating: 5.0.		
Classes:		30 hours		
	Introduction to basic libraries: numpy, s	sklearn, pandas		
	Data preproceesing: normalization, cat	tegoric variable coding		
	Applications of machine learning and a	rtificial intelligence algorithms in regression		
- ·	Applications of machine learning and a	ntificial intelligence algorithms in classification		
lopics	Applications of machine learning and a	Applications of machine learning and artificial intelligence algorithms in clusterization		
	Natural language processing: sentiment analysis text generation test translation			
	Computer Vision: image recognition, object segmentation, face detection			
	Applications in husiness: recommendation system risk analysis process optimization			
Accomplis	Accomplished learning outcomes MI \$1 MI \$2			
Means of	Means of verification rules and criteria of Completion of a project task participation i			
accossment		discussion and Student's activity. Decentage contribution		
assessment		to the final grade: 70%		
Field over the last				
	ticals:	nours		
Topics		1		
Accomplis	shed learning outcomes			
Means of verification, rules and criteria of				
assessment				

References:

Basic	"Python Machine Learning" by Sebastian Raschka, Vahid Mirjalili "Deep Learning" by			
	Ian Goodfellow, Yoshua Bengio, Aaron Courville			
Supplementary	"Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" by Aurélien Géron			

Structure of learning outcomes

Area of academic study: R – Agricultural, forestry	ECTS **
and veterinary sciences	
Area of academic study: T – technical sciences	4 ECTS**

Structure of student activity

Contact hours	49	hrs.	2 ECTS**
Including: lectures	15	hrs.	
classes and seminars	30	hrs.	
consultations	2	hrs.	
participation in research		hrs.	
obligatory field trips		hrs.	
participation in examination	2	hrs.	
e-learning		hrs.	ECTS**
student own work	51	hrs.	2 ECTS**

*Areas of academic study in the fields of: A – the arts; H – humanities; M – medical, sport and health sciences; N – natural sciences; P – biological sciences; R – agricultural, forestry and veterinary sciences; S – social studies; T – engineering and technology

** stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25–30 hours of classes