Course name: Renewable Energy Sources in Rural Areas | ECTS | 6.0 | | |---|----------------------|--| | Course status | facultative | | | Course final assessment /evaluation of outcomes | Exam / graded credit | | | Prerequisite | Basics of physics | | ## Main field of study: Environmental Engineering | Educational profile | General academic | |-------------------------------------|------------------| | Code of studies and education level | master of thesis | | Semester of studies | winter or summer | | Language of instruction | English | Course offered by: | Name of faculty offering the course | Environmental Engineering and Land Surveying | |--|--| | Name of department offering the course | Department of Rural Building | | Course coordinator | Jan Radoń, Ph.D., Agnieszka Sadłowska, Ph.D. | | Learning ou | tcomes: | | | |--|---|---|-----------------| | Symbol of outcome | Description of the learning outcome | Reference to main field of study outcomes | Area
symbol* | | | KNOWLEDGE – student knows and understands: | | | | RES_K1 | how to use the solar (thermal and photovoltaic), hydroelectric, wind, geothermal energy, as well as energy from biomass; issues relevant to energy efficiency and energy storage; the potential of using renewable energy technologies as a complement to, and, to the extent possible, replacement for conventional technologies; economical, social, environmental and political conditions as well as strategies for enhancing the future use of renewable energy resources. | IS2_W05
IS2_W12
IS2_W17 | Т | | SKILLS – student is able to: | | | | | RES_S1 | design and calculate parameters of systems absorbing and transforming renewable energy. | IS2_U05
IS2_U11 | Т | | | | | | | SOCIAL COMPETENCIES – student is ready to: | | | | | RES_C1 | correctly identify and resolve dilemmas related to engineering activities and is aware of the importance of social and ethical aspects in this activity | IS2_K04 | Т | ## **Teaching contents** | Lectures: | | 15 hours | |-----------|---|----------| | Topics | Solar Thermal Energy (3 hours). Photovoltaics (2 hours). Wind Energy (2 hours). | | | | 4. Biomass (2 hours).5. Hydropower (2 hours). | | | |---|--|---|--| | | 6. Wave Energy (2 hours).7. Geothermal Energy (2 hours). | | | | Accomplishe | ed learning outcomes | RES_K1, RES_C1 | | | Means of ve
assessment | rification, rules and criteria of | Single-choice test, positive assessment should be given at least 50% of correct answers to given questions: <50% — insufficient (2.0); 50–60% — sufficient (3.0); 61–70% — satisfactory plus (3,5); 71–80% — good (4.0); 81–90% — good plus (4,5); 91–100% — very good (5.0). The share of the lecture grade in the final grade is 50%. | | | Seminars: | | 30 hours | | | Topics | Design and basic energy and economy calculations of solar system for water heating. Technical and economical analysis of photovoltaic's facility on the basis of exemplary case. Analysis of economical and environmental impact of wind farm based on polish and EU examples. Analysis of substitution of traditional energy sources with biomass for heating of | | | | house in rural areas. Applying of "BIOB Calculator" software for calculations 5. Visit to hydropower plant. 6. Visit to geothermal plant/facility. 7. Review, quiz. | | | | | | 6 | RES_S1 | | | assessment as fo | | Passing quiz – a grade from exercises is an arithmetic average of formative grades. The share of the grade for the project exercises in the final grade of the subject is 50%. | | | References: | | | | | Basic | pp. 223.
2. Kemp W., H. 2006. The
321. | Kemp W., H. 2006. The Renewable Energy Handbook. Aztext Press, USA, pp. 321. Craddock D. Renewable Energy Made Easy. Atlantic Publishing Group, Inc., | | | Supplementa | | | | | | learning outcomes | 0.0 5070 ** | | | Area of academic study: R – Agricultural, forestry and veterinary sciences | | 0.0 ECTS ** | | | | demic study: T – technical sciences | 6.0 ECTS** | | Structure of student activity | off dotale of studelit dotality | | | | |---------------------------------|----|------|--------------| | Contact hours | 57 | hrs. | 2.3 ECTS** | | Including: lectures | 15 | hrs. | | | classes and seminars | 30 | hrs. | - | | consultations | 10 | hrs. | - | | participation in research | 0 | hrs. | - | | obligatory traineeships | 0 | hrs. | - | | participation in examination | 2 | hrs. | - | | e-learning | 0 | hrs. | 0.0 ECTS** | | student own work | 93 | hrs. | 3.7 ECTS** | ^{*}Areas of academic study in the fields of: A – the arts; H – humanities; M – medical, sport and health sciences; N – natural sciences; P – biological sciences; R – agricultural, forestry and veterinary sciences; S – social studies; T – engineering and technology ^{**} stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25–30 hours of classes