Course name: Genetic engineering

ECTS	4
Course status	facultative
Course final assessment /evaluation of outcomes	exam
Prerequisite	knowledge of molecular biology and biochemistry on the level of undergraduate agricultural/natural studies

Main field of study: Agriculture and Horticulture, Biology and Biotechnology (Erasmus+)

Educational profile	general academic			
Code of studies and education level	bachelor/engineer (SI) or master of science (SM)			
Semester of studies	Winter or summer			
Language of instruction	English			

Course offered by:

Name of faculty offering the course	Faculty of Biotechnology and Horticulture		
Name of department offering the course	Department of Plant Biology and Biotechnology		
Course coordinator	Dr hab. Marek Szklarczyk, prof. UAK		

Learning outcomes:

Symbol of outcome	Description of the learning outcome	Reference to main field of	Area symbol*
		study	
		outcomes	
	KNOWLEDGE – student knows and understands	-	
GEN_W1	biochemical manipulations on DNA molecules and enzymes	EPB2_W01	R, P
GEN_WI	used for these purposes	EPB2_W04	П, Г
	issues of recombinant protein production and in vitro	EPB2_W01	
GEN_W2	mutagenesis	EPB2_W04	R, P
		EPB2 W01	
GEN_W3	basic methods of genome analysis	EPB2_W04	R, P
	transmiss in calculated around of examining	EPB2_W01	
GEN_W4	transgenics in selected groups of organisms	EPB2_W04	R, P
		EPB2_W01	
GEN_W5	selected methods of gene cloning	EPB2_W04	R, P
	perspectives of recombinant DNA technology and associated	EPB2_W03	
GEN_W6	social concerns	EPB2_W08	R, P
	SKILLS – student is able to		
	annual competent calls and concern their smalltr	EPB2_U01	
GEN_U1	prepare competent cells and assess their quality	EPB2_U05	R, P
	a sufference and a subscription in a subscription star.	EPB2 U01	
GEN_U2	perform molecular cloning in a plasmid vector	EPB2_U05	R, P
		EPB2 U01	
GEN_U3	interpret results of DNA sequencing	EPB2_U05	R, P

GEN_U4 operate laboratory instruments – centrifuges, spectrophotometers, electrophoresis equipment, gel documentation systems, thermocyclers and incubators		EPB2_U01 EPB2_U05	R, P
	SOCIAL COMPETENCIES – student is ready to:		
GEN_K1	team work	EPB2_K02	R, P
GEN_K2	prevent threats associated with recombinant DNA technology	EPB2_K04 EPB2_K05	R, P
GEN_K3	influence social perception of genetic manipulations	EPB2_K03	R, P

Teaching contents

Lectures		30	hours
Lectures Topics	Techniques for manipulation of DNA molecules Methods of gene delivery Production of recombinant proteins In vitro mutagenesis Genome editing and genome-scale reverse genetics Genetically modified microorganisms and plants	30	hours
	Strategies of molecular cloning High-throughput DNA sequencing		
	Socioethical aspects of genetic engineering		

 Accomplished learning outcomes
 GEN_W1, GEN_W2, GEN_W3, GEN_W4, GEN_W5, GEN_W6

 Means of verification, rules and criteria of assessment
 Evaluation is based on test questions, in order to earn a positive mark at least 51% of answers must be correct. Contribution to the final grade from the course - 65%.

Classes:		30 hours			
Topics	 Production of <i>Escherichia coli</i> competent cells. Control of cell competence through transformation with plasmid DNA. Assessment of transformation efficiency. Isolation of plasmid vector DNA. Isolation of DNA to be cloned. Assessment of concentration and purity of the obtained DNA preparations. Control electrophoresis of the obtained DNA preparations. Restriction digest of the vector and DNA for cloning. Vector dephosphorylation. Preparative electrophoresis of the digested DNA preparations – gel isolation of the linearized vector and restriction fragments (selected fraction) of DNA to be cloned. Control electrophoresis of the gel-isolated DNA fragments. Ligation of the vector and restriction fragments being cloned. Transformation of the ligation mixture into <i>E. coli</i> cells. Analysis of transformation results. Analysis of sequence chromatograms. Isolation of the recombinant protein. 				
Accomplis	Accomplished learning outcomes <i>GEN_U1, GEN_U2, GEN_U3, GEN_U4, GEN_K1, GEN_K2, GEN_K3</i>				
Means of verification, rules and criteria of assessment		 Evaluation is based on: - individual reports from laboratory activities, contribution to the final grade from the course – 15%; - two tests from the laboratory topics (at least 51% of correct answers to earn a positive mark), contribution to the final grade from the course – 20%. 			

References:				
Basic	Brown TA (2016) Gene cloning and DNA analysis: an introduction, 7th edn. Wiley-Blackwell Howe C (2007) Gene cloning and manipulation, 2nd edn. Cambridge University Press Nicholl DST (2008) An introduction to genetic engineering, 3rd edn. Cambridge University Press			
Supplementary	Brown TA (2017) Genomes 4, 4th edn. Garland Science Green MR, Sambrook J, MacCallum P (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press Genetic Engineering & Biotechnology News (GEN) – Mary Ann Liebert, Inc. (journal)			

Structure of learning outcomes

Area of academic study: R – agricultural, forestry and veterinary sciences	2 ECTS**
Area of academic study: P – biological sciences	2 ECTS**

Structure of student activity

Contact hours	-	68	hrs.	2.7	ECTS**
Including:	lectures	30	hrs.		
	classes and seminars	30	hrs.		
	consultations	4	hrs.		
	participation in research	0	hrs.		
	obligatory traineeships	0	hrs.		
	participation in examination	4	hrs.		
e-learning		0	hrs.	0	ECTS**
student own wor	k	32	hrs.	1.3	ECTS**

*Areas of academic study in the fields of: H- humanities; S - social studies; P – biological sciences; T – technological sciences; M- medical, sport and health sciences; R – Agricultural, forestry and veterinary sciences; A – the arts ** stated with an accuracy to 0.1 ECTS, where 1 ECTS = 25 - 30 hours of classes